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We have performed self-consistent computations of the interactions between a
superfluid vortex-ring and a solid particle for two different vortex-ring sizes and
over a wide range of temperatures. In all cases, the particle and the vortex eventually
separate. For temperature T = 0 K, larger rings tend to trap the particle more
effectively than smaller rings. Trying to escape the vortex, the particle follows a
spiralling trajectory that could be experimentally detected. The dominant dynamical
process is the excitation and propagation of Kelvin waves along the vortices. For
T > 0 K, particle–vortex collision induces particle vibrations that are normal to the
particle’s direction of motion and might be experimentally detectable. In contrast
to the T = 0 K case, smaller rings induce larger particle oscillation velocities. With
increasing temperature, enhanced mutual friction damping of Kelvin waves leads to
the damping of both the intensity and frequency of post-collision particle vibrations.
Moreover, higher temperatures increase the relative impact of the Stokes drag force
on particle motion.

1. Introduction
The physics of particle-laden flows can be studied at various space–time scales

employing appropriately designed mathematical models (see for example Crowe,
Sommerfeld & Tsuji 1998; Drew & Passman 1998; Brennen 2005). One standard
method of inquiry assumes that the particles are spherical, and that they are much
smaller than the smallest spatial scale of a corresponding pure flow with the same
initial and boundary conditions, but without any particles. In turbulent flows, the
latter scale could be identified with the Kolmogorov microscale of turbulence. Under
these conditions, there is always a creeping flow of very small Reynolds number
around the particles, which therefore could justifiably be neglected in comparison to
an energetic large-scale flow. A similar accompanying assumption is that the particle
field is so dilute, that hydrodynamic interactions between particles could also (most
of the time) be neglected. Hence, the solution of the corresponding multi-body Stokes
micro-flow problem (with either point or finite-size particles) could be avoided. When
such assumptions of one-way coupling are employed, we can use analytical solutions
of the flow field around an isolated sphere in a uniform low-Reynolds-number flow
stream, in order to find closed-form expressions for the force that the fluid exerts
on the particle. Since such expressions take into account analytically the developed
microflow around the particle, a direct numerical computation of this flow is not
necessary. This method allows an economical and adequate treatment of particle-
laden normal-fluid flows, whenever the aforesaid assumptions are valid.
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A number of experiments have realized particle-laden flows in liquid helium (Celik
& VanSciver 2002; Donnelly et al. 2002; Zhang, Celik & VanSciver 2004; Zhang &
VanSciver 2005; Bewley, Lathrop & Sreenivasan 2006). The latter are two-component
physical systems where a normal fluid interacts via mutual friction forces with a
superfluid (Donnelly 1991; Barenghi, Donnelly & Vinen 2001; Vinen & Niemela
2002; Finne et al. 2006). At present, there are no methods for the direct unambiguous
measurement of the local flow velocity in any of the two fluids. The idea behind
these experiments is to release micrometre-sized particles in liquid helium, and by
measuring their velocity (via the particle image velocimetry (PIV) technique) to
make inferences about the velocity of the two constituent fluids. A first theoretical
analysis of such flows was offered by Poole et al. (2005). This analysis was based
on assumptions very similar to those mentioned above for the treatment of normal
multiphase flow. Unfortunately, such an approach encounters severe difficulties when
applied to superfluids. In particular, the latter are characterized by quantized potential
vortices of nanometre-sized cores which correspond to spatial flow scales that are
orders of magnitude smaller than the micrometre-sized diameters of the inserted
particles. Because of these, Kivotides, Barenghi & Sergeev (2005, 2006b) had to
confine themselves to dilute particle fields in order to show that when the particles
are located many particle diameters away from superfluid vortices, they are forced by
the viscous drag to trace the normal fluid and thus PIV methods could successfully
be employed to measure the normal-fluid velocity. Hence, multiphase superfluids
require new, more powerful methods for their mathematical description. Kivotides,
Barenghi & Sergeev (2006a , 2007b, 2008) have developed methods for the treatment
of particle–vortex interactions from first principles, without any scale separation or
one-way coupling hypotheses. In this paper, we first formulate the mathematical
problem that corresponds to the collision of a spherical particle with a superfluid
vortex ring, and then (using the recently developed methods), we solve this problem
for various particle ring configurations of importance to superfluids.

2. Mathematical model
We are concerned with the collision of a superfluid vortex ring of radius R with a

solid spherical particle of radius a. In general, let X(�, t) denote a superfluid vortex
link L where � is the arclength parameterization along the vortex loopsand t is time.
The dynamics of X(�, t) are described by the following integrodifferential equation:

∂ X
∂t

= V s + V b + V φ + V f . (2.1)

The first contribution to the right-hand side is the superfluid velocity Vs that is given
by the Biot-Savart integral:

V s(x) = − κ

4π

∫
L

d�
X ′ × (X − x)

|X − x|3
, (2.2)

where X ′ ≡ ∂ X/∂� is the unit tangent vector (indicating the direction of the singular
superfluid vorticity) and κ is the quantum of circulation.

The particle acts like an obstacle that deforms the vortex-induced flow, since the
latter cannot penetrate the spherical boundary of the former. This (particle-induced)
flow deformation advects the vortices and this effect is denoted by the term V b. The
computation of V b is discussed by Schwarz (1974) and Kivotides et al. (2006a). The
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latter reference provides detailed, instability-free formulae for the computation of V b

that we have employed in this work.
The third contribution V φ is the potential flow field induced by the motion of

a spherical particle with velocity V p as it moves ina stationary unbounded inviscid
fluid. This flow field is given by the expression (Drew & Passman 1998):

V φ(x|z) = −0.5
(a

r

)3

V p(z) ·
(

I − 3
x ′x ′

r2

)
,

V
φ
j (x|z) = −0.5

(a

r

)3

V
p
i (z)

(
δij − 3

x ′
ix

′
j

r2

)
,

⎫⎪⎪⎬
⎪⎪⎭

(2.3)

where V φ(x|z) is the velocity of the fluid at x caused by a sphere of radius a whose
centre is located at z, I is the 3 × 3 unit matrix whose elements are the Kronecker
delta symbols δij (i, j = 1, 2, 3), x ′ = x − z, r = |x − z|, and a summation over index
i is implied in the component form of the equation.

Since in this work we compute evolutions for both pure (T = 0 K, where T is the
temperature) superfluid helium and superfluid helium at non-zero temperature, we
must take into account the effects of the mutual friction force on the vortices. These
effects correspond to the fourth term Vf that is given by the formula:

V f = h��(V s + V b + V φ) + h� X ′ × (V n − (V s + V b + V φ))

+ h�� X ′ × (X ′ × V n), (2.4)

where V n is the kinematically prescribed normal-fluid velocity, and h� = d��/(d
2
�� +

(1−d�)
2), h�� = (d�−d2

��−d2
� )/(d

2
��+(1−d�)

2) are dimensionless numbers given in terms
of the (also dimensionless) mutual friction coefficients d� and d��. To compute the
latter coefficients, we start from the Hall–Vinen coefficients and following Barenghi,
Donnelly & Vinen (1983) calculate the transverse and longitudinal drag coefficients
D′

� and D��. Subsequently, we compute D� = D′
� − ρnκ , and finally d� = D�/(ρsκ),

d�� = D��/(ρsκ).
The particle dynamics is described by the following equation:

me

dV p

dt
= 6πaμn(V n − V p) + 2πρsa

3 ∂V s(z, t)
∂t

+
1

2
ρs

∫
S

dS(V s + V b)2n̂, (2.5)

where me is the effective mass of the particle me = m + (2/3)π(ρs + ρn)a
3, m is the

particle mass, μn is the dynamic viscosity of the normal fluid, ρs and ρn are the
superfluid mass density and normal-fluid mass density, respectively, and V s(z, t) is
the vortex-induced velocity at the particle centre. We will consider only neutrally
buoyant particles here, thus the particle mass density ρp is equal to the sum of the
superfluid and normal-fluid mass densities. The last term is a surface integral with
n̂ being the outward unit radial vector field on the spherical particle surface. It is
convenient to write the right-hand side of (2.5) as f = f d + f l + f b; this decomposes
the total force f into viscous drag, f d , local, f l , and boundary force, f b.

Note that, although the equation of motion for the vortices is exact for both
T = 0 K and finite-temperature liquid helium, the same is not true for the particle
equation of motion. The latter is exact only at T = 0 K in which case it reduces
to the important Schwarz’s solid-particle equation of motion (Schwarz 1974). The
equation employed here takes heuristically into account thermal effects via a viscous
drag force known as Stokes force (the first term on the right-hand side), and an
added mass term on the left-hand side that is non-zero when the particle accelerates
inside the normal fluid. An exact treatment of normal-fluid effects could be made
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by solving the normal-fluid Navier–Stokes equation around a suspension of solid
particles, and taking into account the normal-fluid effect on the particles by replacing
the Stokes-drag force in the particle equation of motion by the force

f n
i =

∫
S

σij n̂jdS, (2.6)

where

σij = −pδij + μn

(
∂V n

i /∂xj + ∂V n
j /∂xi

)
(2.7)

is the normal-fluid stress tensor, p is the normal-fluid pressure, repeated indices are
summed, and the integral is performed over the particle’s surface. This treatment is
not within the capabilities of already developed methods and it is a desirable future
development.

All computations were performed in an unbounded fluid domain. This was also
assumed in Schwarz’s derivations of the formulae for V b, as well as of the particle
equation of motion at T = 0 K. Note, that although the V b formulae are valid
also for vortex loops in periodic domains, the V φ formula assumes an isolated
particle and does not comply with periodic boundary conditions. The introduction
of ‘image’ particles and their effects on the vortices via the corresponding V φ and V b

fields are thus necessary in the latter case. Finally, in all computations of superfluid
helium at non-zero temperature reported here, we have prescribed the normal flow
kinematically, and we have set V n = 0.

3. Mathematical methods
A detailed discussion of the numerical and computational methods is given in

Kivotides et al. (2008). For completeness of exposition, we provide here a summary.
The coupled system of integro-differential equations (2.1) and (2.5) is solved using a
third-order-accurate low-storage Runge–Kutta (RK) method. This approach requires
the discretization of the Biot-Savart integral in the fashion of Riemann sums. The
desingularization of the kernel is achieved by splitting it into local and non-local
parts. The local contribution is handled following a method by Schwarz (1985). The
non-local contribution is computed by employing a Gaussian kernel in order to
smooth the singular superfluid vorticity. The numerical analysis of this method has
been described by Winckelmans & Leonard (1993). The method introduces a cutoff
scale in the Biot-Savart formula which, in all results reported here, is equal to 1.2 times
the discretization length along the vortices. Two vortices reconnect instantaneously
when they approach each other at a distance less than the discretization length along
their contours. In this way, the small-scale vortex dynamics during reconnection as
described by deWaele & Aarts (1994) are not taken into account. This is consistent
with the unavailability of very fine spatial resolution along the vortices as dictated by
computational complexity constraints. It is also consistent with the aforesaid small
distance smoothing of the superfluid singular vorticity according to the Winckelmans–
Leonard method.

The method for the computation of V b was introduced in Schwarz (1985) and
the particular computational formulae are available from Kivotides et al. (2006a).
It is based upon an analytical solution in terms of Legendre functions series of the
effect of the spherical particle boundary on a linear vortex segment. The treatment of
particle–vortex collisions involves a number of important issues that were resolved in
Kivotides et al. (2008). It builds upon earlier works of Schwarz (1985) and Tsubota &
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Maekawa (1993) dealing with vortex collisions with stationary particles, and it extends
the latter works in the realm of self-consistent particle–vortex interactions. Kivotides
et al. (2006a) have shown that when a vortex ring propagates in the vicinity of a solid
particle, a vortex instability develops and an attachement of the particle to the vortex
follows. At first sight, such an attachement leads to discontinuous vortex lines and
therefore the Biot-Savart line integral becomes ill-defined. Our method tackles this
problem by continuing the attached vortex inside the particle (i.e. by preserving the
continuity of the line vortices), and by taking into account in a self-consistent way
the effect of the added vortex segments on the dynamics of the vortices outside the
particle. These effects include not only Biot-Savart effects of the inner-particle vortex
segments on the outer vortices, but also an extra velocity contribution to the outer
vortex dynamics which ensures that the addition of inner vortices complies with the
no-flow condition normal to the particle’s surface. Kivotides et al. (2008) provides
detailed discussions of the various numerical and computational techniques involved,
as well as evidence about the accuracy and efficiency of our approach.

4. Results
We shall apply our methods to 4He. Since superfluidity in 4He exists over a

temperature range starting from T = 0 K where only the superfluid is present, to
a temperature (infinitesimally) below that of the Bose–Einstein condensation where
the superfluid component is negligible, a thorough investigation of every superfluid
problem ought to include a temperature space parameter search. In this work, we
compute particle–vortex-ring interactions at four different temperatures: T = 0 K
(where ρs = 0.145 g cm−3 and ρn = 0), T = 1.3 K (where ρs = 0.1386 g cm−3,
ρn = 0.00652 g cm−3 and μn = 15.2 × 10−6 g cm−1 s−1), T = 1.95 K (where
ρs = 0.07542 g cm−3, ρn = 0.07012 g cm−3 and μn = 14.1435 × 10−6 g cm−1 s−1),
and T = 2.171 K (where ρs = 0.00652 g cm−3, ρn = 0.13955 g cm−3 and μn =
25.40145 × 10−6 g cm−1 s−1)). For the two lowest temperatures, we used two different
ring radii: R = 0.00025 cm and R = 0.00125 cm, whereas for the two larger
temperatures, we have studied only the R = 0.00125 cm case. This is because for
the larger temperatures, the R = 0.00025 cm rings were shrinking so fast that (for
the initial particle/ring distance mentioned above) collisions were not occurring. In
other words, the particle and the ring did not reach a close enough proximity for
the latter to become unstable and attach to the spherical surface as was shown in
Kivotides et al. (2006a). Although we have performed computations with zero initial
particle velocities, we have also performed a search in velocity space for two cases,
i.e. T = 1.95 K and T = 2.171 K. The particle diameter 2a = 2 × 10−4 cm was chosen
in agreement with particle sizes used in experiments. All computations reported here
were done with this particle size. Moreover, in all cases, the initial particle–vortex
distance was 1.5a. The vortex velocity is directed towards the positive y-axis, and the
z-axis is along the vertical direction.

The accuracy of all results presented here was continuously monitored throughout
all computations. Since the scope of our method is to enforce the zero radial velocity
boundary conditions on the surface of the particle, we have devised an appropriate
accuracy criterion. In particular, if the boundary condition were enforced exactly, at
all points on the particle’s surface the total velocity vector would form a 90◦ angle
with the radial direction vector. We allow small computational deviations from this
exact condition only up to a given tolerance from 0.01◦ to 0.1◦. This is achieved with
a modest number of terms in the Legendre expansion, of the order of 100. We have
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Figure 1. Relative error in the vortex-ring radius data 
R/R0 versus time. The ring has
radius R0 = 0.00025 cm and propagates at T = 0 K. There were approximately 3.7 × 104 time
steps taken within this time interval.

also verified the accuracy of the purely vortex dynamics algorithms. It is important
that the latter enforce the conservation of energy during vortex-ring propagation at
zero temperature. In practice, this means that the variations of the ring’s diameter
and planarity during its motion ought to be negligible. Moreover, these must be true
for the actual ring diameters and computational time steps and discretization lengths
employed in the particle–vortex computations. Figure 1 shows the relative error

R/R0 in the ring’s radius data when a ring of radius R0 = 0.00025 cm propagates at
T = 0 K over a period of time 
t = 0.0006 s. There were approximately 3.7 × 104 time
steps taken within this time interval. The computational specifications are identical
to the corresponding case in the actual results. Evidently, 
R/R0 is of order 10−6.
Morevover, the maximum deviation from exact planarity (the numerical ‘width’ of the
ring) is 2 × 10−8 cm. The particle radius represents a basic length scale that must be
well resolved in order to capture the relevant physics which, as the results indicate, are
determined by the formation upon particle–vortex collision of a Kelvin-wave system
along the vortex. By choosing a grid size 12 times smaller than the particle diameter,
we ensure that particle–Kelvin-wave interactions at the particle scale are captured
well. This resolution requirement is met by a discretization length δ� ≈ 1.56×10−5 cm.
The time step δt must not allow the fastest Kelvin wave in the system to propagate
by more than one δ� per time step, and must not exceed 0.25τ . Here, the Stokes time
τ is given by the formula τ = a2ρp/3μn, where ρp is the mass density of the particle
and μn is the dynamic viscosity of the normal fluid. This time is the characteristic
time that viscous forces require in order to damp particle motion in the absence
of vortex effects. The purpose of the prefactor 0.25 is to ensure that the viscous
damping process is adequately resolved. For particle diameter 2a = 2 × 10−4 cm, the
three temperature cases T = 1.3 K, T = 1.95 K and T = 2.171 K correspond to
τ = 3.1935 × 10−5 s, τ = 3.4301 × 10−5 s and τ = 1.9170 × 10−5 s, respectively. The
typical time step is δt ≈ 0.15 × 10−7 s.
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Figure 2. Particle–vortex collision for initial particle speed V = 0 cm s−1, at T = 0 K.
The vortex-ring has radius R = 0.00025 cm and moves to the right with initial velocity
3.3465 cm s−1. The initial vortex-ring plane is normal to the figure. Time increases as follows:
(a) t1 = 0 s, (b) t2 = 0.1892 × 10−6 s, (c) t3 = 0.3154 × 10−6 s, (d) t4 = 0.6940 × 10−5 s,
(e) t5 = 0.1640×10−4 s, (f) t6 = 0.2208×10−4 s. As the vortex attaches to the particle, a system
of vortex waves develops. The vortex wanders for some time at the back of the particle, before
detaching from it.

Finally, in discussing the solutions, we will refer to the various contributions to the
total force acting on the particle. These are the boundary-induced force

f b = 1
2
ρs

∫
S

dS (V s + V b)2n̂, (4.1)

the damping force

f d = 6πaμn(V n − V p), (4.2)

and the local force

f l = 2πρsa
3∂V s(z, t)/∂t. (4.3)

4.1. Temperature T = 0 K

The results for the smallest ring case are shown in figure 2. Figure 2(a) depicts
the initial configuration. The ring is set on a collision course with the particle’s
centre. Figure 2(b) shows that as the ring attaches to the particle, it develops Kelvin
waves conceptually similar to the Kelvin-wave cascade in pure superfluid turbulence
(Kivotides et al. 2001; Nazarenko & West 2003; Vinen, Tsubota & Mitani 2003;
Kozik & Svistunov 2004). In figure 2(c), the vortex has propagated half-way through
the particle’s diameter before moving lower and towards the back of the sphere
where it wanders for some time, shaking the particle as it moves along its surface
(figure 2d), before it dettaches from it (figure 2e). As vortex and particle drift apart
(figure 2f), the particle moves essentially in a straight line. The latter is evident in the
results of figure 3(a), where all components of the particle’s velocity become constant
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Figure 3. Particle–vortex collision for initial particle speed V = 0 cm s−1, at T = 0 K. The
particle’s diameter is 2a = 2 × 10−4 cm, the ring radius is R = 0.00025 cm, and the initial
particle–vortex distance is 1.5a. The solid vertical lines mark the times of particle–vortex
collision and separation. (a) Particle velocity evolution. The particle oscilates in the y-
(dot-dashed line) and z- (dotted line) directions as indicated by the change of the velocity sign
along these directions. The dynamics of the x-component (dashed line) are less pronounced.
The solid line indicates the total velocity magnitude. After the detachement of the vortex from
the particle, the latter moves essentially in a straight line. (b) Partial contributions to the total
force magnitude. The local force f l (solid line) dominates over the boundary force f b (dotted
line).

after vortex–particle detachment. Figure 3 also indicates that the forces acting on the
particle while it is in contact with the vortex are orders of magnitude stronger than
any distant interactions between the vortex and the particle. According to figure 3(b),
the local force dominates over the boundary-induced force. This is mainly due to the
Kelvin-wave system which developed on the vortex during the collision. The results
suggest that the introduction of particles in pure superfluid turbulent flow will have
a non-trivial effect on the energetics of this flow, via the introduction of Kelvin-wave
cascades. The physics of these cascades would be different from the physics of the
pure superfluid Kelvin-wave system owing to the presence of the spherical boundary.
As is well known from studies of normal-fluid turbulent flows past solid surfaces, the
presence of the latter alters the statistical structure of the former.

The solution for the larger ring radius R = 0.00125 cm appears in figure 4. It
is phenomenologically different from the previous one. As the ring attaches to the
particle, the latter starts moving along circular orbits that grow in diameter with time
(figure 4b,c). Figure 5 shows a detail of the (y, z)-plane projection of the particle’s
centre trajectory after the collision shown in figure 4. Eventually, the particle breaks
free from the vortex, not because the vortex is detached from it, but because the
loop reconnects with itself allowing the particle to escape having acquired a vortex
‘tail’ (figure 4d). This could be a generic feature of interaction of particles with
large vortices at ultra small temperatures, since the collision induces Kelvin waves
in the vortex that in turn facilitate a self-reconnection. Why are the two solutions
qualitatively different? Certainly the collision velocity plays an important role, since
in the small-ring case the vortex moves past the particle without allowing enough
time for the latter to accelerate under the influence of the interaction forces. Indeed,
the times of figure 2 differ by orders of magnitude from the times of figure 4. Another
interpretation, which also agrees with the results of Kivotides et al. (2008) at finite
temperatures, is that the smaller the particle (relative to the vortex size), the more
it tends to be trapped by the colliding vortex. In particular, figure 6(a) shows the
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Figure 4. Particle–vortex collision for initial particle speed V = 0 cm s−1, at T = 0 K.
The vortex-ring has radius R = 0.00125 cm and moves to the right with initial velocity
0.7714 cm s−1. The initial vortex-ring plane is normal to the figure. Time increases as follows:
(a) t1 = 0 s, (b) t2 = 0.3407 × 10−3 s, (c) t3 = 0.5679 × 10−3 s, (d) t4 = 0.7698 × 10−3 s. The
particle spirals out from the point of initial contact, before a self-reconnection of the capturing
vortex allows it to escape.
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Figure 5. Detail of the (y, z)-plane projection of the particle’s centre trajectory after the
collision shown in figure 4. The arrows indicate the direction of a distinctly spiralling motion.
The path shown starts at t = 0 s and ends at t = 0.34 × 10−3 s.

particle velocity components. It depicts that, as the particle remains attached to the
vortex for longer times, its kinetic energy increases. This is suggestive of a trapping
mechanism. As in the smaller-ring case, the particle would like to separate from the
vortex. However, when the vortex is large, it tends to efficiently oppose this tendency
by turning the particle against its direction of motion. This leads to the outward-
spiralling particle trajectories. As the forces acting on the particle change its direction,
they also do work on it and increase its kinetic energy. Since all superfluid vortices
have the same circulation, larger rings correspond to larger fluid kinetic energies
that act as reservoirs of available particle kinetic energy. The higher the trapping
capacity of a vortex, the higher the kinetic energy that the particle acquires during its
interaction with it.



376 D. Kivotides and S. L. Wilkin

–10

–5

0

5

10

0 4 8

v i
 (

cm
 s

–1
)

t (s)

0

 0.2

 0.4

 0.6

 0.8

1.0(b)(a)

2 6 10

| f
i |

 / 
| f

 |

t (s)

Figure 6. Particle–vortex collision for initial particle speed V = 0 cm s−1, at T = 0 K.
The particle’s diameter is 2a = 2 × 10−4 cm, the ring radius is R = 0.00125 cm, and the
initial particle–vortex distance is 1.5a. The solid vertical lines mark the time of particle–vortex
collision and separation. (a) Particle velocity evolution. There are rapid variations of the
y-component (dot-dashed line)and z-component (dotted line) of the velocity, that correspond
to the spiralling particle motion on the (y, z)-plane. The dynamics of the x-component (dashed
line) are less pronounced yet more interesting than in the corresponding figure 3. The solid line
indicates the total velocity magnitude. (b) Partial contributions to the total force magnitude.
With the exception of pre-collision times, the local force f l (solid line) dominates over the
boundary force f b (dotted line). This is due to the system of Kelvin waves that develops on
the vortex upon collision.
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Figure 7. Comparison of vortex-ring length evolution for the initial ring radius
R = 0.00125 cm case. Line sare: T = 0 K (solid), T = 1.3 K (dashed), T = 1.95 K (dotted)
and T = 2.171 K (dot-dashed). (a) Vortex-ring length for small times. The arrows mark the
points where the loop attaches to the particle. (b) Vortex-ring length for all computation times.
The arrows mark the points where the loop detaches from the particle.

Figure 7 shows the evolution of the vortex loop length (solid lines). The almost
constant loop length until the onset of collision is plausible, since at this temperature
there are no mutual friction effects, and, in addition, previous work (Schwarz
1985; Kivotides et al. 2006a) has shown that the vortex is being deformed by
the particle only during the very late stages of its approach to it. Notice that the
vortex length increases even after the particle and the vortex separate from each other.

4.2. Temperature T = 1.3 K

The evolution of the system’s configuration for temperature T = 1.3 K is shown
in figure 8. Although mutual friction damps the collision-induced Kelvin waves, the
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Figure 8. Particle–vortex collision for initial particle speed V = 0 cm s−1, at T = 1.3 K.
The vortex-ring has radius R = 0.00025 cm and moves to the right with initial velocity
3.4346 cm s−1. The initial vortex-ring plane is normal to the figure. Time increases as follows:
(a) t1 = 0 s, (b) t2 = 0.2524 × 10−4 s, (c) t3 = 0.5048 × 10−4 s, (d) t4 = 0.1073 × 10−3 s,
(e) t5 = 0.1514 × 10−3 s, (f) t6 = 0.1704 × 10−3 s. The trajectory of the loop is similar to the
corresponding T = 0 K case (figure 2). However, there are differences, such as for example the
mutual friction-induced loop smoothness.

loop’s trajectory is similar to that in the corresponding T = 0 K case. Figure 9(a)
shows the various components of the particle velocity, and figure 9(b) shows the
partial contributions to the total force acting on the particle. The local and boundary
forces dominate between particle–vortex collision and separation. After detachment,
in contrast to the T = 0 K case, the particle dynamics is determined mainly by the
viscous drag force, and the particle is brought to a halt.

Figure 10 shows the system’s configuration for the R = 0.00125 cm case. Mutual
friction damps the collision-induced Kelvin waves, and, in a sense, the vortex is
tethered at its upper end by the particle. Since the lower vortex part is not strongly
affected by the collision, it continues its motion creating a stretched bridge that
connects the vortex with the particle. When this bridge becomes too narrow, the
vortex reconnects with itself and separates from the particle.

Figure 11 shows the evolutions of velocity (figure 11a) and partial force
contributions (figure 11b). As expected, the velocity magnitudes are smaller than those
of the T = 0 K case. The force data suggest that the decisive factor for the dynamics is
the development and evolution of Kelvin waves upon particle–vortex collision. When
T = 0 K, these are allowed to evolve, and lead to a large local force which is mainly
responsible for the vortex-trapping potential. When T = 1.3 K, mutual friction damps
these waves and the dynamics are dominated by the boundary force. This state of
balance between the forces, however, leads to very different system evolutions.

Figure 7 shows the vortex length evolution (dashed lines). Although the collision
happens at almost the same time as the collision in the T = 0 K case, vortex-wave
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Figure 9. Particle–vortex collision for initial particle speed V = 0 cm s−1, at T = 1.3 K.
The particle’s diameter is 2a = 2 × 10−4 cm, the ring radius is R = 0.00025 cm, and
the initial particle–vortex distance is 1.5a. The solid vertical lines mark the time of
particle–vortex collision and separation. (a) Particle velocity evolution. The dashed line signifies
the x-component, the dot-dashed line corresponds to the y-component, and the z-component
is depicted by the dotted line. The solid line indicates the total velocity magnitude. Even after
loop detachement, in contrast to the T = 0 K case, there are some residual velocity dynamics,
since the Stokes drag tends to reduce the particle velocity to zero. (b) Partial contributions to
the total force magnitude. As long as the vortex is attached to the sphere, the most dominant
forces are the local (solid line) and boundary force (dotted line); after loop–particle separation,
the drag force (dashed line) dominates, and reduces the particle velocity.

(a) (b) (c) (d )

Figure 10. Particle–vortex collision for initial particle speed V = 0 cm s−1, at T = 1.3 K.
The vortex-ring has radius R = 0.00125 cm and moves to the right with initial velocity
0.7868 cm s−1. The initial vortex-ring plane is normal to the figure. Time increases as follows:
(a) t1 = 0 s, (b) t2 = 0.4417 × 10−4 s, (c) t3 = 0.5931 × 10−3 s, (d) t4 = 0.1317 × 10−2 s. In
opposition to the T = 1.3 K, R = 0.00025 cm case, the system’s phenomenology here is very
different from the corresponding T = 0 K case. The loop remains smooth and its lower part is
not much affected by the collision. As a result, a stretched bridge is created between the main
loop and the particle. Evidently, mutual friction, by smoothing out the Kelvin waves on the
vortex, neutralizes the trapping effects of the local force, and in conjunction with the viscous
drag, damps the spiralling particle trajectory of the corresponding T = 0 K case.

damping leads to a much smaller (and in fact monotonically decreasing) vortex
length, as well as to a longer period of particle–vortex contact. The rate of length
reduction is small, and so the T = 1.3 K case is an important boundary between
the length-increasing T = 0 K evolutions, and the predominantly length-decreasing
higher-temperature cases that we are going to examine next.
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Figure 11. Particle–vortex collision for initial particle speed V = 0 cm s−1, at T = 1.3 K.
The particle’s diameter is 2a = 2 × 10−4 cm, the ring radius is R = 0.00125 cm, and the initial
particle–vortex distance is 1.5a. The solid vertical lines mark the times of particle–vortex
collision and separation. (a) Particle velocity evolution. The shaking of the particle by the
vortex is illustrated by the oscillations of the velocity along the y- (dot-dashed line) and z-
directions (dotted line). The solid line signifies the total velocity magnitude, and the dashed
line is the x-component of velocity. (b) Partial contributions to the total force magnitude. The
local force (solid line) is dominant immediately after the collision. Its importance decays with
time, as the mutual friction smooths the vortex contour, and the boundary force (dotted line)
becomes the dominant one. Viscous drag (dashed line) has a small influence on the dynamics
in between the collision and separation times, but eventually becomes the dominant force.

(a) (b) (c) (d)

Figure 12. Particle–vortex collision for initial particle speed V = 0 cm s−1, at T = 1.95 K.
The vortex-ring has radius R = 0.00125 cm and moves to the right with initial velocity
0.2725 cm s−1. The initial vortex-ring plane is normal to the figure. Time increases as follows:
(a) t1 = 0 s, (b) t2 = 0.6941 × 10−4 s, (c) t3 = 0.3723 × 10−3 s, (d) t4 = 0.5805 × 10−3 s. The
particle shrinks much faster than in the T = 1.3 K case, and so it has to travel a longer distance
before it collides with the particle, (b). While attached to the particle (c), the vortex shrinks
significantly. Since the upper vortex part is tethered by the particle, it tends to be stretched by
the lower part that continues its forward motion. This effect eventually causes particle–vortex
detachment, (d), by inducing a self-reconnection between the segments of the stretched bridge.

4.3. Temperature T = 1.95 K

Figure 12 shows the particle–vortex configuration. As shown in figure 7 (dotted lines)
the vortex collides with the particle at a later time than in the T = 1.3 K case (dashed
lines). This at first seems to be a paradox, since the mutual friction-induced increased
rate of ring-radius reduction would lead us to expect that the vortex would move faster
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than in the T = 1.3 K case, and collide with the particle at earlier times. However, we
must also take into account that, since the particle moves on a steady horizontal plane,
the tip of the vortex will shrink below this plane and the vortex must cover a larger
distance before collision (figure 12b). This effect is depicted in the results of figure 7
(dotted lines). After collision, the mutual friction causes the vortex to shrink rapidly
while still remaining attached to the particle (figure 12c), before detaching from it
(figure 12d). In order to study the effect of initial particle velocity on the system’s
dynamics, we have performed computations for the T = 1.95 K, R = 0.00125 cm case
with initial particle speeds V = −10 cm s−1 and V = −25 cm s−1. The loop-length
results for these cases (including the T = 2.171 K, V = 0 cm s−1 data for comparison)
are shown in figure 13. The results show that, as the initial velocity is increased in
the T = 1.95 K case, the particle attaches to the sphere much earlier than for the
T = 2.171 K, V = 0 cm s−1 case. Moreover, although for V = −10 cm s−1 the
initial velocity effect is not strong enough to differentiate strongly the vortex length
dynamics from their zero initial-velocity counterparts, there is an obvious effect for
V = −25 cm s−1. For this case, figure 14 indicates that, throughout the system’s
evolution, the lower part of the vortex is unaffected by its collision with the particle,
and only its upper part is stretched by the particle upon detachement. This stretching
is responsible for the increase of vortex length observed in figure 13. Overall, the ratio
between particle–vortex contact time scale and mutual friction action time scale is an
important dynamical factor at these high temperatures.

The results for the particle velocity and the particle forces are shown in figure 15.
Figure 15(b) indicates that the superfluid-induced forces dominate the dynamics
throughout the period of particle–vortex contact. The normal-fluid-induced viscous
drag becomes important only around the onset of detachment. This is because the ring
has shrunk drastically by the time of detachment, and in fact disappears completely
immediately after. The latter explains why the superfluid-induced forces drop sharply
to zero at t = 0.000604 s. Both the y- and z-components of the particle velocity
become negative before the onset of collision (figure 15b). This behaviour is explained
by noticing that the vortex initially moves with its velocity pointing toward the
positive y-axis, and at the same time (as shown in figure 12), shrinks toward the
negative z-axis. Thus, the particle, since it is attracted by the vortex and tends to
move towards it, develops negative velocity components along the y- and z-axes.
Upon collision, a low pressure develops in the area of particle vortex contact, and
the resulting force rapidly pushes the particle along the negative y-axis. However, the
viscous drag force, which is strong around collision time, strives to bring the particle
to a halt, and so the post-collisional y-velocity tends subsequently towards positive
values. In accord with these, notice that a plateau in the graph of the y-velocity is
associated with domination of the viscous force by the superfluid-induced forces, and
that further non-trivial dynamics are possible only towards detachment, when the
balance of forces is adjusted once again.

4.4. Temperature T = 2.171 K

Figure 16 shows the time evolution of the system’s configuration. According to figure 7
(dot-dashed lines), the particle–vortex collision (figure 16b) happens at an earlier time
than for the T = 1.95 K case (dotted lines). This is because, owing to enhanced
mutual friction action at this high temperature, the ring-radius shrinks at a dramatic
rate and accelerates accordingly. Moreover (figure 7), it is remarkable that despite the
higher temperature, at the time of detachment (figure 16d), the ring has shrunk less
than at the corresponding T = 1.95 K case separation time. This is because, owing to
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Figure 13. Comparison of initial vortex-ring length evolution for radius R = 0.00125 cm.
Lines are: T = 1.95 K, V = 0 cm s−1 (dot-dashed), T = 1.95 K, V = −10 cm s−1 (solid),
T = 1.95 K, V = −25 cm s−1 (dashed) and T = 2.171 K, V = 0 cm s−1 (dotted). (a) Vortex-ring
length for small times. The arrows mark the points where the loop attaches to the particle.
(b) Vortex-ring length for all computation times. The arrows mark the points where the loop
detaches from the particle.

(a) (b) (c) (d)

Figure 14. Particle–vortex collision for initial particle speed V = −25 cm s−1, at T = 1.95 K.
The vortex-ring has radius R = 0.00125 cm and moves to the right with initial velocity
0.3047 cm s−1. The initial vortex-ring plane is normal to the figure. Time increases as follows:
(a) t1 = 0 s, (b) t2 = 0.3786 × 10−5 s, (c) t3 = 0.6562 × 10−4 s, (d) t4 = 0.6814 × 10−4 s. The
effect of initial velocity becomes clear when we compare with the results of figure 12. The ring
spends a small amount of time in contact with the particle, and has scarcely shrunk upon
detachment.

its higher velocity (because of higher shrinking rate) relative to the T = 1.95 K case,
the ring does not stay in contact with the particle for a long time, and so mutual
friction does not have enough time to act.

For this case too, we have performed a series of computations in order to investigate
the effects of initial particle velocity. It was found that, as the initial velocity increases,
the vortex is vigorously deformed as it tries to avoid the approaching particle. This
process is active at all temperatures, but it is more pronounced at T = 2.171 K
owing to higher values of the mutual friction coefficients. Figure 17 demonstrates
the deformation mechanism for initial velocity V = −1000 cm s−1. As the vortex
and the particle approach each other (figure 17a), the vortex is deformed into an
arc that tends to avoid the particle (figure 17b,c). However, at the points where
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Figure 15. Particle–vortex collision for initial particle speed V = 0 cm s−1, at T = 1.95 K.
The particle’s diameter is 2a = 2 × 10−4 cm, the ring radius is R = 0.00125 cm, and
the initial particle–vortex distance is 1.5a. The solid vertical lines mark the times of
particle–vortex collision and separation. (a) Particle velocity evolution. The dashed line signifies
the x-component, the dot-dashed line corresponds to the y-component, and the z-component
is depicted by the dotted line. The solid line indicates the total velocity magnitude. The particle
is sharply pushed along the negative y-axis upon collision, and the effects of this forcing
are subsequently damped by viscous drag effects. (b) Partial contributions to the total force
magnitude. The lines signify the local force (solid), the boundary-induced force (dotted) and the
viscous drag force (dashed). The superfluid-induced forces dominate the dynamics throughout
the period of particle–vortex contact.

(a) (b) (c) (d)

Figure 16. Particle–vortex collision for initial particle speed V = 0 cm s−1, at T = 2.171 K.
The vortex-ring has radius R = 0.00125 cm and moves to the right with initial velocity
4.7225 cm s−1. The initial vortex-ring plane is normal to the figure. Time increases as follows:
(a) t1 = 0 s, (b) t2 = 0.1893 × 10−4 s, (c) t3 = 0.9622 × 10−4 s, (d) t4 = 0.2033 × 10−3 s.

the arc meets the (relatively) undisturbed part of the vortex, the vortex curvature
is high and increases proportionally to the growth of the arc radius. At the points
of this increased curvature, the local vortex velocity becomes very high, and so the
vortex rapidly collapses onto the particle, as indicated by the arrows of figure 17(d).
After the collision (figure 17e), the particle acquires a vortex handle (figure 17f). This
intriguing phenomenon begs the question of whether there is a threshold velocity
above which the vortex avoids the particle. In order to answer this question, we have
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Figure 17. Particle–vortex collision for initial particle speed V = −1000 cm s−1, at
T = 2.171 K. The vortex-ring has radius R = 0.00125 cm and moves to the right with
initial velocity 42.3787 cm s−1. For clarity, only part of the vortex loop is shown. Time
increases from as follows: (a) t1 = 0 s, (b) t2 = 0.1059 × 10−6 s, (c) t3 = 0.1414 × 10−6 s,
(d) t4 = 0.1750 × 10−6 s, (e) t5 = 0.1888 × 10−6 s, (f ) t6 = 0.2226 × 10−6 s. As the particle-ring
approach deforms the latter, the high-curvature loop segments formed at the roots of the
induced vortex arc cause the loop to collapse upon the particle forming a handle.

gradually increased the initial particle velocity. We found that even up to speeds of
V = −10 000 cm s−1, the vortex always collides with the particle.

The results for the particle forces and particle velocities for speed V = 0 cm s−1 are
shown in figure 18. Figure 18(a) suggests that upon collision, the particle is sharply
pushed along the leftward-downward direction. This forcing is due to the pressure
difference between the low-pressure area formed by vortex–particle contact and the
pressure on the upper hemisphere of the particle. Subsequently, this perturbation is
strongly damped and there are no particle oscillations. The increased mutual friction
effects reduce the impact of the local force immediately after the collision, and Stokes
damping becomes the most significant particle force. Notice the differences with the
T = 1.95 K case (figure 15). They are due to aforementioned differences in the location
(along the particle surface) and timing of the collision in the two cases. Because of
the particular vortex–particle configuration shown in figure 16(c), a low-pressure area
is induced on the right particle hemisphere close to particle–vortex detachment. The
resulting pressure difference is responsible for the observed positive particle velocity
component along the y-direction.

5. Conclusion
We have performed self-consistent computations of the interactions between a

superfluid vortex ring and a solid particle for two different ring sizes and over a wide
range of temperatures starting from absolute zero and ending close to the superfluid
transition temperature. At non-zero temperatures, we have kinematically prescribed a
motionless normal-fluid component. The ratio of vortex-ring radius over the particle
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Figure 18. Particle–vortex collision for initial particle speed V = 0 cm s−1, at T = 2.171 K.
The particle’s diameter is 2a = 2 × 10−4 cm, the ring radius is R = 0.00125 cm, and
the initial particle–vortex distance is 1.5a. The solid vertical lines mark the times of
particle–vortex collision and separation. (a) Particle velocity evolution. The dashed line signifies
the x-component, the dot-dashed line corresponds to the y-component, and the z-component
is depicted by the dotted line. The solid line indicates the total velocity magnitude. After a
strong push in the downward-leftward direction upon collision, viscous drag action damps the
particle’s motion. Close to detachment, the y-velocity acquires positive values. This is due to
the particular vortex–particle configuration of figure 16(c), which induces a low pressure area
on the right particle hemisphere pushing the particle to the right. (b) Partial contributions
to the total force magnitude. The lines signify the local force (solid), the boundary-induced
force (dotted) and the viscous drag force (dashed). During most of the particle–vortex contact
period, the particle dynamics are governed by the competition between boundary and viscous
forces.

radius was R/a = 2.5 for the smaller-ring case, and R/a = 12.5 for the larger-ring
case. We have found that, in all cases, the particle and the vortex eventually separate.

For T = 0 K, larger rings tend to trap the particles more effectively than smaller
rings. Owing to the absence of mutual friction effects, the rings are vigorously
distorted by the collision-induced Kelvin waves, and lose their ring-like appearance.
The T = 0 K results also suggest that an experiment monitoring the motion of
solid particles in a superfluid vortex link could detect particle–vortex interactions by
recording the spiral-like particle motions depicted in figure 4. The larger the rings
involved in the process are, the more evident the particle motions would be, since
larger rings are more effective than smaller rings in their efforts to trap particles. As
indicated by the data, the larger ring induces much higher post-collisional particle
velocities than does the smaller ring. Moreover, because of the undamped collision
induced vortex wave system, the local force grossly overpowers the boundary force.

For T > 0 K, the particle vibrates normal to its direction of motion upon its
collision with the vortex. The solutions suggest that smaller rings induce larger
vibration velocities. This is exactly opposite to what happens in the T = 0 K case,
and suggests that, for T > 0 K, smaller rings might be easier to detect experimentally.
At smaller temperatures (here T = 1.3 K and T = 1.95 K), the superfluid-induced
forces dominate the normal-fluid-induced viscous damping between collision and
detachment. As the temperature increases, the increased mutual friction damping of
vortex waves (which are the main contributors to the local force) leads to the damping
of both the intensity and frequency of post-collision particle vibrations. Overall, as
the temperature increases, the importance of the local force is reduced and that of
the drag force is increased. This also helps to damp the particle oscillations. In fact,
at T = 2.171 K, the viscous force is the largest contributor to particle dynamics
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between collision and detachment. With the exception of T = 0 K, the boundary
force is always an important dynamical factor. According to the T = 1.3 K data,
the collision of particles with vortices would result in sudden particle vibrations
(as indicated by the particle velocity data) that could be detected if the vortex
system were dilute enough for the particles to move relatively smoothly (i.e. without
fluctuations) in between their collisions with the superfluid vortices. The latter is
conditional upon the type and energy level of the corresponding normal-fluid flow.
We could imagine, for example, a turbulent normal-fluid component. For this case,
Kivotides et al. (2007a) showed that a solid particle would, most of the time, sharply
change its direction upon encountering a normal-fluid filament, but, sporadically, also
briefly spiral around it. These motions are different from the normal to the particle’s
direction of motion vibrations depicted here, so, in principle, the effects of the two
fluids on the particles could be discernible. In the case of turbulent normal fluid,
one possibility concerns the presence of the coherent superfluid bundles calculated
in Kivotides (2006). In particular, according to the present results, when a superfluid
vortex arc that is curved at the scale of the particle collides with the latter, the two will
separate after their interaction. In contrast, for vortices that appear as straight lines
at the scale of a particle, Kivotides et al. (2008) have shown that, for each T > 0 K,
there is a corresponding range of incoming particle velocities for which particle and
vortex stay together after collision. With respect to this, note also that Kivotides
(2005) has shown that, for T = 1.3 K, a tangle of superfluid vortices interacting with
(a stationary, on the average) normal fluid presents a scaling regime in the histogram
of the local vortex curvature, and that the cutoff of this regime is Rc ≈ 10−5 m. This
curvature radius coincides with the radius of the larger ring computed here. In this
context, Kivotides (2006) has shown that, in turbulent liquid helium, the normal fluid
might induce stretched vortex-bundles of macroscopic circulation in the superfluid.
When a solid particle collides with such a bundle of vortices, it might be trapped
by them by having its kinetic energy radiated from the point of collision via vortex
waves propagating along the bundle. This in turn, in combination with the results
of Kivotides (2007), suggests that the induced Kelvin waves, for sufficiently high
particle kinetic energy, could excite bundle instability modes that would lead to the
destruction of the superfluid coherent structures. In order to address such crucial
issues, a combined action of experiment and theory is required.

It is important to note that in our computations we assume that the particle is
a perfect sphere, hence we ignore any surface roughness at the vortex core scale.
There are two reasons behind this assumption. First, the mathematical method that
computes the effect of the particle boundary on the vortices is valid only when the
former is a perfect sphere. This is because the spherical shape allows the derivation of
an analytical formula for the effect of the boundary on a linear vortex segment which is
one of the main results upon which the present computations are based. Secondly, the
introduction of small-scale roughness requires a similar refinement of the discretization
length along the vortices, which is not computationally feasible. The employed grid is
already computationally demanding, and it only resolves adequately the sphere-radius
scale phenomena. Having said this, we do not expect the qualitative conclusions of
this study to be altered by the inclusion of fine-scale dynamics. The eventual particle–
vortex detachment is due to the large-scale velocity of the ring relative to the particle
which is determined by the initial ring-radius. Moreover, the relative importance
of the contributions of the various forces to particle dynamics depends mostly on
the establishment upon collision of a (well-resolved at the particle-radius scale)
Kelvin-wave system on the vortices, and not on the wavenumber-space extension
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of the spectrum of this system. Finally, another important assumption is that of a
kinematically prescribed stationary normal-fluid velocity field. This assumption could
be relaxed by developing methods for the calculation of self-consistent interactions
between the three fields comprising multiphase liquid helium physics: superfluid,
normal-fluid and particulate-solid. This requires (in addition to the methods employed
here), the computation of the normal-fluid flow around a suspension of spherical
particles. At present, we can only speculate about the physics of such complex
interactions. It is well known (Kivotides, Barenghi & Samuels 2000), that a superfluid
vortex ring moving in an initially at rest normal fluid generates two normal-fluid
vortices around it. Thus, when the superfluid vortex ring collides with the particle, it
is as if two normal-fluid vortices also collide with the particle. Moreover, the normal
flow around the particle would deform the vortex-ring contour even before collision.
For small Reynolds number, creeping normal flow around the particle, the above
effects might not be very important, but for higher particle velocities there could be
a significant effect that deserves systematic study. Overall, the future development
of fully dynamic self-consistent methods would allow a lively interaction between
experiment and theory in liquid helium, which could help advance our understanding
of these remarkable systems.

This paper is dedicated to the memory of Brian Jackson.
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